概要: 據了解,隨著對節約能源與保護環境的要求的不斷提高,建筑維護結構的保溫技術也在日益加強,尤其是外墻保溫技術得到了長足的發展,并成為我國一項重要的建筑節能技術,不容忽視。
目前,在建筑中常使用的外墻保溫主要有內保溫、外保溫、內外混合保溫等方法,然而,在不同的保溫方法施工過程中,也出現了各種各樣的質量問題,本文意在通過對上述三種保溫方法產生的問題進行分析,從而對工程中的質量問題起到預防的作用。
外墻內保溫
外墻內保溫就是外墻的內側使用苯板、保溫砂漿等保溫材料 ,從而使建筑達到保溫節能作用的施工方法。該施工方法具有施工方便,對建筑外墻垂直度要求不高,施工進度快等優點。近年來,在工程上也經常的被采用。然而,外墻內保溫所帶來的質量問題也隨之而來。
外墻內保溫的一個明顯的缺陷就是:結構冷(熱)橋的存在使局部溫差過大導致產生結露現象。由于內保溫保護的位置僅僅在建筑的內墻及梁內側,內墻及板對應的外墻部分得不到保溫材料的保護,因此,在此部分形成冷(熱)橋,冬天室內的墻體溫度與室內墻角(保溫墻體與不保溫板交角處)溫度差約在10℃左右,與室內的溫度差可達到15℃以上,一旦室內的濕度條件適合,在此處即可形成結露現象。而結露水的浸漬或凍融及易造成保溫隔熱墻面發霉、開裂。
另外,在冬季采暖、夏季制冷的建筑中,室內溫度隨晝夜和季節的變化幅度通常不大(約10℃左右),這種溫度變化引起建筑物內墻和樓板的線性變形和體積變化也不大。但是,外墻和屋面受室外溫度和太陽輻射熱的作用而引起的溫度變化幅度較大。當室外溫度低于室內溫度時,外墻收縮的幅度比內保溫隔熱體系的速度快,當室外溫度高于室內氣溫時,外墻膨脹的速度高于內保溫隔熱體系,這種反復形變使內保溫隔熱體系始終處于一種不穩定的墻體基礎上,在這種形變應力反復作用下不僅是外墻易遭受溫差應力的破壞也易造成內保溫隔熱體系的空鼓開裂。
內外混合保溫,是在施工中,外保溫施工操作方便的部位采用外保溫,外保溫施工操作不方便的部位作內保溫,從而對建筑保溫的施工方法。
從施工操作上看,混合保溫可以提高施工速度,對外墻內保溫不能保護到的內墻、板同外墻交接處的冷(熱)橋部分進行有效的保護,從而使建筑處于保溫中。然而,混合保溫對建筑結構卻存在著嚴重的損害。外保溫做法部位使建筑物的結構墻體主要受室內溫度的影響,溫度變化相對較小,因而墻體處于相對穩定的溫度場內,產生的溫差變形應力也相對較小;內保溫做法部位使建筑物的結構墻體主要受室外環境溫度的影響,室外溫度波動較大,因而墻體處于相對不穩定的溫度場內,產生的溫差變形應力相對較大。局部外保溫、局部內保溫混合使用的保溫方式,使整個建筑物外墻主體的不同部位產生不同的形變速度和形變尺寸,建筑結構處于更加不穩定的環境中,經年溫差結構形變產生裂縫,從而縮短整個建筑的壽命。
工程保溫做法中采用內外保溫混合使用的做法是不合理的,比作內保溫的危害更大。
外墻外保溫
外墻外保溫,是將保溫隔熱體系置于外墻外側,使建筑達到保溫的施工方法。由于外保溫是將保溫隔熱體系置于外墻外側,從而使主體結構所受溫差作用大幅度下降,溫度變形減小,對結構墻體起到保護作用并可有效阻斷冷(熱)橋,有利于結構壽命的延長。因此從有利于結構穩定性方面來說,外保溫隔熱具有明顯的優勢,在可選擇的情況下應首選外保溫隔熱。
然而,由于外保溫隔熱體系被置于外墻外側,直接承受來自自然界的各種因素影響,因此對外墻外保溫體系提出了更高的要求。就太陽輻射及環境溫度變化對其影響來說,至于保溫層之上的抗裂防護層只有3mm~20mm,且保溫材料 具有較大的熱阻,因此在的熱量相同的情況下,外保溫抗裂保護層溫度變化速度比無保溫情況下主體外傾溫度變化速度提高8~30倍。
因此,抗裂防護層的柔韌性和耐候性對外保溫體系的抗裂性能起著關鍵的作用,值得探索。
上一篇: 散熱器購買六大誤區
下一篇: 慎選粘合劑以減少其對居室裝修的污染